LEADERS

TOP International LEADERS Calling Market Crashes Years Ahead
Second to None, Anywhere...

'Warned 2000 tech slide; predicted 2008 meltdown in 2007. Forecasted 2020 global economic collapse in 2011, AND NOW- BY 2050 - THE MOTHER OF ALL CRASHES"

Featured post

A #TALE OF TWO CITIES - #ECONOMICS AND #SCIENCE COLLIDE

  SURREAL ECONOMICS OR CONCRETE SCIENCE? ORIGINAL POST It  was the best of times, it was the worst of times, it was the age of wisdom, it wa...

Think, act ,lead

Search This Blog

HUGE SAVINGS ON HOT NEW ITEMS

Friday, 15 May 2020

#POTH SEQUEL #FREE VIP #WEBINAR - PLANET OF THE HUMANS




  
"MOST IMPORTANT STAR-STUDDED WEBINAR EVER"




  
An Affair to Remember: Roll out the red carpet for your next event ...



RED CARPET EVENT

What did the film get right, and what should we do about it?


Live VIP Webinar
Tuesday, May 19

6 pm U.S. Pacific Time

9 pm U.S. Eastern Time





                               

No Cost to Attend

Video Replay link will be provided to all Registrants

What should we do in response to the key messages of Planet of the Humans? Love it or hate it, there’s no escaping some inconvenient truths in this controversial film released by Michael Moore. Join us as we examine those truths, consider the necessary course corrections, and identify actions we can take now – to avoid terminating or greatly harming human civilization.
Our panel will share insights about the film and what they believe are the key take-aways. They’ll discuss the roles of overpopulation, overconsumption, and economic growth in the most serious environmental crises we face. Most importantly, they’ll pick up where the film leaves off: discussing what we can and should do if this film motivates us to act. See the movie free for a limited time.






 

Kristine Mattis

An interdisciplinary environmental scholar with a background in Biology and Earth System Science, Kristine has worked as a medical researcher, a science reporter for the congressional record in the U.S. House of Representatives, and a science teacher. She holds a PhD in Environment and Resources. Her writing encompasses issues of social and environmental justice, public health, risk, and science.




 

Dave Gardner

Co-host of the GrowthBusters podcast about sustainable living; co-host of The Overpopulation Podcast; director of the documentary GrowthBusters: Hooked on Growth; host of the syndicated radio series, Conversation Earth; and executive director of World Population Balance.







 

Erika Arias

Co-host of the GrowthBusters podcast about sustainable living; co-host of The Overpopulation Podcast; Programs & Engagement Coordinator for World Population Balance, and a childfree researcher and advocate




Brian Czech
 

Brian Czech

Executive director of the Center for the Advancement of the Steady State Economy (CASSE). With a Ph.D. in renewable natural resources, his specialties intersect ecological economics, conservation biology, and public policy. The author of several books, Czech recently edited Best of The Daly News: Selected Essays from the Leading Blog in Steady State Econ






Wednesday, 13 May 2020

The BIg Guy is RIGHT #POTH;

'I think the big crisis of our times is that our minds have been manipulated to give power to illusions'. — Vandana Shiva

The Film Sufi: “Planet of the Humans” - Jeff Gibbs (2019)

Climate Crisis: Our Ecological Dysfunction Has a Marketing Problem (and it’s not Michael Moore)


I first heard of Jeff Gibbs’ contentious film Planet of the Humans (POH) sometime last year. Like millions of others, I viewed it just recently. Over the past week, the scathingly negative reviews I discovered disheartened but did not surprise me. While the film may present outdated statistics about so-called renewable energy technologies (which should have been revised to reflect current trends), while it may clumsily cobble together disparate aspects of the ecological effects of our species on the planet, and while it utilizes what may be characterized as calculating imagery to evoke emotional resonance (as all films do), the crux of Gibbs’ argument should not be discarded and deserves discussion: that we cannot achieve ecological sustainability without addressing the role of humanity’s overproduction and overconsumption.

It seems to me that people who watch this film project onto it what they want to see, much like they did with Advertising Age’s Marketer of the Year, President Obama, during his 2008 campaign. Rather than view the film for what it is, they see it through their personal lens. My lens is, at my core, that of a biologist, which means what I see concerns life and the preservation of life on this planet. What I see is that our ecological dysfunction is not merely one of climate crisis, but of the totality of human disruptions that impair the health of all organisms and ecosystems.


Compartmentalization and reductionism: “To a man with a hammer, everything is a nail”

Some critics of the film are proving to be as disingenuous as they purport the filmmakers to be. The film may be facile at times, but so are many of the critiques. Myopia on the topics of renewables and population (which I will discuss further down) overlooks the heart of the film: that we cannot continue to increase our economic growth and resource use on a finite planet; that we are leaving a morass of waste and pollution in our wake that is killing all life on the planet, including us; that our high-tech solutions to maintain our over-consumptive way of life have not done any good in terms of mitigating our colossal environmental emergencies; and that overexploitation of natural resources is a major problem that we refuse to address.

On the May 1st edition of Rising, filmmaker Josh Fox, who called for an all-out ban of POH, stated, “The IPPC is telling us that we have to reduce our emissions by 50%, OK, 50% in the next ten years. That means we have to replace 50% of the fossil fuel technology in the world — or more than that — with renewable energy.” This is circular logic that assumes only one possible solution: replacement of energy sources rather than reduction of energy use. Both are possible.

Critics like Josh quibble about the inaccuracies with the carbon budgets and carbon accounting of so-called green energy because they say that the renewable energy technologies explored in the film are now much more cost-effective and efficient than what the films claim. True enough. Yet there is so much more to the picture, which is why many of these reductive scientific analyses do not suffice in terms of overall ecological sustainability. Most look at carbon and little else within the life cycle analysis (LCA) of technologies. This is partially because there do not exist clear comprehensive metrics through which to quantify ecology, though researchers continually try. I know from my own experience conducting LCAs that pertinent variables are frequently omitted, either by design (they are not or because the variable does not have reliable data or cannot be numerically quantified. Thus, LCAs do not necessarily reflect a complete picture of the whole ecological footprint of the technology. Moreover, sometimes qualitative issues are more important than quantitative. (See addendum for example.)

Planet of the Humans: What Michael Moore got right - Canadians for ...

Critics of POH rarely if ever mention ecological and environmental health, toxic pollutants, and general resource use, perhaps because a good number of them originate from high-tech and engineering fields. They do not account for the entire diverse ecosystem, with all of its flora and fauna, that was decimated to create that mirrored solar array in the California desert, as shown in the film. Land use, habitat loss, and toxic contamination are primary drivers of our biodiversity crisis. In creating that solar playground, we might win in terms of non-fossil fuel energy, but we lose in a number of other ways that are unaccounted for. They also do not consider the socioeconomic, political, and public health costs of our continually increasing resource extraction and industrial lifestyle, nor the human rights and environmental justice issues therein.




LEARN MORE





Sunday, 10 May 2020

#INDUSTRIAL #AGE SET TO END BY 2050

We have always known that heedless self-interest was bad morals; we know now that it is bad economics"      - FDR

BLIP

Humanity's 300 year self-terminating experiment with industrialism



Since the inception of our industrial revolution, we increasingly ingenious Homo sapiens have been depleting - persistently and increasingly - the finite, non-replenishing, and increasingly scarce NNRs (nonrenewable natural resources) that enable our industrialized way of life, and our very existence.

Regrettably, because the NNR utilization behavior that enables our species' existence - and that is essential to perpetuating our existence - simultaneously undermines our existence, both our NNR utilization behavior and our resultant industrial lifestyle paradigm are unsustainable.

As a perverse consequence of our unparalleled ingenuity, we have become enmeshed in a self-inflicted, inescapable, and self-terminating "predicament" - we are doomed if we persist in our unsustainable NNR utilization behavior, and we are doomed if we do not - a predicament that will resolve itself catastrophically for humankind.


NATURE BATS LAST


The premise of "Blip" is that increasingly pervasive global NNR scarcity is causing faltering global human prosperity, which is causing increasing global political instability, economic fragility, and societal unrest.

This scenario will intensify during the coming decades and culminate in humanity's self-inflicted global societal (species) collapse, almost certainly by the year 2050.

"Blip" substantiates these seemingly inconceivable assertions by synthesizing the quantitative and qualitative evidence produced by hundreds of scientists, scholars, researchers, and analysts in the various physical sciences and behavioral sciences that address the origins and evolution of industrial humanity and human industrialism.

These experts produced the "dots", which are connected clearly and comprehensibly in "Blip".

We will soon discover that humanity's self-terminating experiment with industrialism represents a mere 300 year "blip" along the three million year timeline of human existence.


Dear Chris ;

Thanks so much for a copy of your recent book.  As always, excellent work.

Here are a few of my humble observations and thoughts, adding further despondency to the whole situation. 

Aggregating all NNRs from a planetary perspective, thereby creating a single theoretical planetary NNR unit to your lessons, should help clearly convey our grave circumstances, thusly causing even deeper concern among readers.

Following from the above, one could point out that it is our traditional economic theory that drove us into this abyss. And it still fails to acknowledge or understand the realities we now face in terms of certain economic collapse, particularly as NNRs diminishing returns will tie directly to the dilution and collapse of all currencies. Few will understand, it seems until it is much too late, that this is the true and primary cause of ALL Fiscal Cliffs - not our politicians, for sure.

The diminishing returns from the planetary NNR unit are also dramatically accelerated by population growth, climate change, and other related concerns. Throw into this mix, the demise of the supporting social, economic, and political frameworks, then the dark outcomes of diminishing returns get much deeper.


So, the only question to ponder now is: Where do we stand? And based on the projected extraction and consumption growth of the global NNR units, all other things being equal;   


HOW MUCH LONGER DO WE HAVE; EVEN ON A BEST CASE BASIS? 


Sincerely,


T. A. McNeil, B.Admin, CMA, CA
CEO - Founder




How the 2020 Economic Collapse is Different from the 2008 ...




WATCH THE MOST IMPORTANT VIDEO EVER


Friday, 8 May 2020

INTRODUCTION - OUR #RENEWABLE ENERGY #FUTURE

Paul Driessen: Green Energy Poverty Week - The Global Warming ...

Introduction

Our Renewable Future book cover
BUY NOW
The next few decades will see a profound and all-encompassing energy transformation throughout the world. Whereas society now derives the great majority of its energy from fossil fuels, by the end of the century we will depend primarily on renewable sources like solar, wind, biomass, and geothermal power.
Two irresistible forces will drive this historic transition.
The first is the necessity of avoiding catastrophic climate change. In December 2015, 196 nations unanimously agreed to limit global warming to no more than two degrees Celsius above preindustrial temperatures.[1] While some of this reduction could technically be achieved by carbon capture and storage from coal power plants, carbon sequestration in soils and forests, and other “negative emissions” technologies and efforts, the great majority of it will require dramatic cuts in fossil fuel consumption.
The second force driving a post-carbon energy shift is the ongoing depletion of the world’s oil, coal, and natural gas resources. Even if we do nothing to avoid climate change, our current energy regime remains unsustainable. Though Earth’s crust still holds enormous quantities of fossil fuels, economically useful portions of this resource base are much smaller, and the fossil fuel industry has typically targeted the highest-quality, easiest-to-access resources first.
All fossil fuel producers face the problem of declining resource quality, but the problem is most apparent in the petroleum sector. During the decade from 2005 to 2015, the oil industry’s costs of production rose by over 10 percent per year because the world’s cheap, conventional oil reserves—the “low-hanging fruit”—are now dwindling (fig. I.1). While new extraction technologies make lower-quality resources accessible (like tar sands and tight oil from fracking), these technologies require higher levels of investment and usually entail heightened environmental risks. World coal and gas supplies have yet to reach the same higher-cost tipping point; however, several recent studies suggest that the end of affordable supplies of these fuels may be years—not decades—away.[2] We will be consuming fossil fuels for many years to come, no doubt; but their decline is inevitable. We are headed to a nonfossil future whether we’re ready or not.


WEB Figure I-1 Crude oil costs and production
Figure I.1. Change in world oil industry capital expenditures (CAPEX) and crude oil production, 2005 vs. 1998 and 2013 vs. 2005.
Source: U.S. Energy Information Administration and Steven Kopits, “Oil and Economic Growth: A Supply Constrained View,” presentation at Center on Global Energy Policy, Columbia University, New York, NY, February 11, 2014.

Nuclear fission power is not likely to play a larger role in our energy future than it does today, outside of China and a few other nations, if current trends continue. Indeed, high investment and (post-Fukushima) safety requirements, growing challenges of waste storage and disposal, and the risks of catastrophic accidents and weapons proliferation may together result in a significant overall shrinkage of the nuclear industry by the end of the century. Despite recent press reports about progress in hot fusion power and claims for “cold fusion,” these energy sources currently produce no commercial energy and—even if claims turn out to be justified—they are unlikely to do so on a significant scale for decades to come.
Fossil fuels are on their way out one way or another, and nuclear energy is a dead end. That leaves renewable energy sources, such as solar, wind, hydro, geothermal, and biomass, to shoulder the burden of powering future society. While it is probably an oversimplification to say that people in the not-too-distant-future will inhabit a 100 percent renewably powered world, it is worth exploring what a complete, or nearly complete, shift in our energy systems would actually mean. Because energy is implicit not only in everything we do but also in the built environment around us (which requires energy for its construction, maintenance, and disposal/decommissioning), it is in effect the wellspring of our existence. As the world embarks on a transformative change in its energy sources, the eventual impacts may include a profound alteration of people’s personal and collective habits and expectations, as well as a transformation of the structures and infrastructure around us. Our lives, communities, and economies changed radically with the transition from wood and muscle power to fossil fuels, and so it is logical that a transition from fossil fuels to renewables—that is, a fundamental change in the quantity and quality of energy available to power human civilization—will also entail a major shift in how we live.
How would a 100 percent renewable world look and feel? How might the great-grandchildren of today’s college students move through a typical day without using fossil fuels either directly or indirectly? Where will their food come from? How will they get from place to place? What will the buildings they inhabit look like, and how will those buildings function? Visions of the future are always wrong in detail, and often even in broad strokes; but sometimes they can be wrong in useful ways. Scenario exercises can help us evaluate and prepare for a variety of outcomes, even if we don’t know precisely which reality will emerge. Further, by imagining the future we often help create it: advertisers and industrialists long ago learned that creative product developers, marketers, and commercial artists can shape the choices, actions, and expectations of entire societies. If we are embarking upon what may turn out to be history’s most significant energy transition, we should spend some effort now to imagine an all-renewable world, even though the exercise will inevitably involve guesswork and oversimplification.
A good way to begin visualizing the post-carbon future might be to explore how and why we came to construct our current “normal” reality of energy consumption.

How “Normal” Came to Be

For most people living in the early nineteenth century, firewood was the dominant fuel and muscles were the primary source of power. The entire economy—including the design of towns and homes, and people’s daily routines—was structured to take advantage of the capabilities of wood and human or animal muscle. Food staples were often grown close to the point of consumption in order to minimize the need for slow and expensive horse- or sail-drawn transport. Many people worked as farmers or farm laborers, because many hands were required to do the fieldwork needed to produce sufficient food for the entire population. Traction animals were significant symbols of wealth: a prosperous farmer might own a team of oxen or mules, while his well-off cousin in the city might keep a horse or two to provide personal mobility. In slave-holding portions of the United States, some humans claimed ownership of other humans so as to make economic use of their intelligently directed muscles—a horrific practice that shattered the lives of millions (its effects continue to reverberate) and was ended only by an epic war. Meanwhile, vast tracts of forest in the northeastern United States were being cleared to provide fuel for home heating and, increasingly, for the operation of industrial machinery, including steamboats and steam locomotives.


WEB Image I-1 Carl_Conrad_Dahlberg
Agrarian life in the nineteenth century. (Credit: Carl Conrad Dahlberg, Malmö Art Museum, via Wikimedia Commons.)

Then, in the mid-1800s, along came fossil fuels. Compared to firewood, coal and oil were more energy dense and therefore more portable, and they could be made available in greater quantities (especially since forests were disappearing due to overcutting). Compared to muscles, fuel-fed machines were formidable and tireless. Nineteenth-century inventors had already been devising ways to reduce labor through mechanization and to create new opportunities for mobility, communication, and amenity with devices ranging from the telegraph to the rail locomotive. The advent of cheap, abundant, and transportable fossil energy sources encouraged a flood of new or improved energy-consuming technologies.
A series of significant inventions—including the electricity generator, alternating current, and the electric motor—made energy from coal (also from moving water and later from natural gas and nuclear fission) available in homes and offices. This opened the potential for electric lighting, washing machines, vacuum cleaners, and an ever-expanding array of entertainment and communications devices, including telephones, radios, televisions, and computers.
Meanwhile, liquid fuels made from petroleum mobilized the economy as never before. Automobiles, airplanes, trucks, ships, and diesel-fueled trains began hauling people and freight at distances and speeds—and in quantities—that were previously unimaginable. Oil products also began fueling society’s raw materials extraction processes—mining, forestry, and fishing—resulting in far higher rates of production at much lower costs. By the mid-twentieth century, oil was increasingly transformed into plastics, chemicals, lubricants, and pharmaceuticals. And oil-powered machinery replaced human labor in agriculture, resulting in one of the most significant demographic shifts in history as the bulk of humanity left farms and moved to cities (fig. I.2).


WEB Figure I-2 World urban and rural population
Figure I.2. World rural and urban population, 1950–2015.
Source: United Nations Department of Economic and Social Affairs, “World Urbanization Prospects 2014”.

Because fossil fuels were so cheap relative to the power of muscles, machines took over much of the drudgery of life. Whereas human slavery had figured prominently in parts of the U.S. economy in the early nineteenth century, today each American commands the services of hundreds of “energy slaves”[3] counted as the number of persons whose full-time labor would be required to substitute for the services currently provided by powered machinery.
As energy is consumed in the making of roads, buildings, pipelines, food, clothing, and other products, it is effectively embedded or embodied in those objects. The built environment around us, and the manufactured goods with which we surround ourselves, represent immense amounts of fossil energy—energy used in the production of materials and goods through the operations of mining equipment, smelters, cement makers, trucks, road surfacers, and factories.
During the same period in which fossil fuels began to power most aspects of daily life, we began to design our homes and cities to fit the machines and products that used those fuels or embodied the energy from their combustion. The automobile became the design centerpiece for suburbs, shopping malls, parking lots, garages, and highways. Meanwhile, expansion of transport by airplane required the construction of airports—the largest of which cover as much space as was formerly occupied by entire towns.
All of this was undertaken with the tacit assumption that society would always have more fossil energy with which to maintain and operate its ever-expanding infrastructure. There was no long-range grand plan guiding the project. The fossil-fueling of the economy happened bit by bit, each new element building on the last, with opportunity leading to innovation. What was technically possible became economically necessary . . . and hence normal.
It is easy now to take it all for granted. But we shouldn’t. As the energy sources that built the twentieth century ebb, it may be helpful to disabuse ourselves of many of our assumptions and expectations by observing how different “normal” is for North Americans as compared with people in rural villages in less industrialized countries, or by reading first-person narratives of daily life in the eighteenth and nineteenth centuries. As profoundly dissimilar as our current “normal” is to human experience prior to the industrial revolution, the future may be just as different again.

Why a Renewable World Will Be Different

Solar, wind, hydro, and geothermal generators produce electricity, and we already have an abundance of technologies that rely on electricity. So why should we need to change the ways we use energy? Presumably all that’s necessary is to unplug coal power plants, plug in solar panels and wind turbines, and continue living as we do currently.
This is a misleading way of imagining the energy transition for six important reasons.
  1. Intermittency. As we will see in chapter 3, the on-demand way we use electricity now is unsuited to variable renewable supplies from solar and wind. Power engineers designed our current electricity production, distribution, and consumption systems around controllable inputs (hydro, coal, natural gas, and nuclear), but solar and wind are inherently uncontrollable: we cannot force the sun to shine or the wind to blow to suit our desires. It may be possible, to a limited degree, to make intermittent solar or wind energy act like fossil fuels by storing some of the electricity generated for later use, building extra capacity, or redesigning electricity grids. But this costs both money and energy. To avoid enormous overall system costs for capacity redundancy, energy storage, and multiple long-distance grid interconnections, it will be necessary to find more and more ways to shift electricity demand from times of convenience to times of abundant supply, and to significantly reduce overall demand.
  2. The liquid fuels problem. As we will see in chapter 4, electricity doesn’t supply all our current energy usage and is unlikely to do so in a renewable future. Our single largest source of energy is oil, which still fuels nearly all transportation as well as many industrial processes. While there are renewable replacements for some oil products (e.g., biofuels), these are in most cases not direct substitutes (few automobiles, trucks, ships, or airplanes can burn a pure biofuel without costly engine retrofitting) and have other substantial drawbacks and limitations.[4] Only portions of our transport infrastructure lend themselves easily to electrification—another potential substitution strategy. Thus a renewable future is likely to be characterized by less mobility, and this has significant implications for the entire economy.
  3. Other uses of fossil fuels. Society currently uses the energy from fossil fuels for other essential purposes as well, including the production of high temperatures for making steel and other metals, cement, rubber, ceramics, glass, and other manufactured goods. Fossil fuels also serve as feedstocks for materials (e.g., plastics, chemicals, and pharmaceuticals). As we will see in chapter 5, all of these pose substitution or adaptation quandaries.
  4. Area density of energy collection activities. In the energy transition, we will move from sources with a small geographic footprint (e.g., a natural gas well) toward ones with much larger footprints (large wind and solar farms collecting diffuse or ambient sources of energy). As we do, there will be unavoidable costs, inefficiencies, and environmental impacts resulting from the increasing spatial extent of energy collection activities. While the environmental impacts of a wind farm are substantially less than those from drilling for, distributing, and burning natural gas, or from mining, transporting, and burning coal, capturing renewable energy at the scale required to offset all gas and coal energy would nevertheless entail environmental impacts that are far from trivial. Minimizing these costs will entail planning and adaptation.
  5. Location. Sunlight, wind, hydropower, and biomass are more readily available in some places than others. Long-distance transmission entails significant investment costs and energy losses. Moreover, transporting biomass energy resources (e.g., biofuels or wood) reduces the overall energy profitability of their use.This implies that, as the energy transition accelerates, energy production will shift from large, centralized processing and distribution centers (e.g., a 500,000 barrel per day refinery) to distributed and smaller-scale facilities (e.g., a local or regional biofuel factory within a defined collection zone or “shed”), since the same amount of “feedstock” cannot be concentrated in one place. It also implies that population centers may tend to reorganize themselves geographically around available energy sources.
  6. Energy quantity. As we will see in chapter 6, quantities of energy available will also change during the transition. Since the mid-nineteenth century, annual global energy consumption has grown exponentially to over 500 exajoules (fig. I.3). Even assuming a massive build-out of solar and wind capacity during the next 35 years, renewables will probably be unable to fully replace the quantity of energy currently provided by fossil fuels, let alone meet projected energy demand growth. This raises profound questions not only about how much energy will be available but also for widespread expectations and assumptions about global economic growth.


WEB Figure I-3 World primary energy consumption by fuel
Figure I.3. World primary energy consumption by fuel type, 1850–2014. Primary electricity converted by direct equivalent method.
Source: Data compiled by J. David Hughes. Post-1965 data from BP, Statistical Review of World Energy (annual). Pre-1965 data from Arnulf Grubler, “Technology and Global Change: Data Appendix,” (1998).

For these six reasons, we should explore now how energy usage must and will evolve during the next few decades as the world transitions (willingly or not) to renewable energy. As we’ve already seen, our current patterns of energy use developed in response to the qualities and quantities of the energy available to us during the past century. Fossil fuels provided significant advantages: they were available on demand, cheap, portable, and energy dense. They also entailed costs, including climate change and other environmental and social impacts.[5] Renewables offer their own suite of advantages, the most obvious of which are that, with solar and wind, there is no fuel cost, and they have far lower climate and health impacts. But that doesn’t mean these are truly free or limitless energy sources: the devices used to capture energy from sunlight and wind require materials and embodied energy. Further, the energy we get from these sources is variable and won’t substitute for all current fossil fuel uses. And the technologies we use to harvest energy from sunlight and wind have their own environmental impacts.
Engineers will certainly make every effort to adapt new energy resources to familiar usage patterns (e.g., by replacing gasoline-fueled cars with electric cars). We can, to a certain limited extent, press solar and wind into the mold of our current energy system by buffering their variability with energy storage technology and grid enhancements. But the larger the proportion of our total energy we get from these resources, the more our buffering efforts will cost in both money and energy. Over the long run, usage patterns will almost certainly change substantially as we adapt to renewable energy resources.
The problem with our current energy usage patterns is not simply that they are wasteful (though they often are) or that we use energy to do things that are harmful (though we often do). Even disregarding those legitimate concerns, many current energy usage patterns probably just won’t work in an all-renewable world.
WHERE WILL OUR FOOD COME FROM

Overview of This Book

While the main thrust of this book is to examine how energy usage is likely to change in an all-renewable world, we will begin by reviewing the basics of energy and looking closely at how we currently power society.
Then we will take a survey of energy supply and demand issues, exploring the changed circumstances to which society will be adapting. This portion of the book consists of five chapters—three discussing energy quality (one on electricity, one on liquid fuels, one on other energy uses), one exploring how much renewable energy capacity might be available by midcentury, and one answering various objections likely to be raised to our conclusions about future energy supply.
The book concludes by discussing the critically important questions of how to ensure that everyone benefits from the renewable energy transition and what steps can and should be taken now to put us on a path toward a truly just and sustainable future.


The goal of this book is to help readers think more clearly and intelligently about our renewable future. An all-renewable world will present opportunities as well as challenges. And building that world will entail more than just the construction of enormous numbers of solar panels and wind turbines. Along the way, we will learn that how we use energy is as important as how we get it. Indeed, unless we adapt our energy usage patterns with the same vigor as is devoted to changing energy sources, the transition could result in a substantial reduction of economic functionality for society as a whole.
ORF-buy-banner-pci-ip-logos2


Dream, Believe, Inspire